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RNAi plays important roles in many biological processes,
including cellular defense against viral infection. Components
of the RNAi machinery are widely conserved in plants and ani-
mals. In mammals, microRNAs (miRNAs) represent an abun-
dant class of cell encoded small noncoding RNAs that partici-
pate in RNAi-mediated gene silencing. Here, findings that
HIV-1 replication in cells can be regulated by miRNAs and that
HIV-1 infection of cells can alter cellularmiRNA expression are
reviewed. Lessons learned from and questions outstanding
about the complex interactions between HIV-1 and cellular
miRNAs are discussed.

RNAi is a biological mechanismwidely conserved from yeast
through humans (1). A key component of the RNAi machinery
is the RNA-induced silencing complex (RISC),2 which, in its
minimal form, is composed of anArgonaute protein and a small
noncoding RNA (ncRNA) of �22–30 nucleotides in length.
The biogenesis of RISC and its activities have been extensively
reviewed elsewhere (2, 3); simply stated, using its small ncRNA
component as a guide sequence, an RNA-loaded RISC targets a
complementary mRNA and elicits gene silencing via RNA deg-
radation or a reduction in mRNA translation (4–6).
There are three major types of small ncRNAs: Piwi-interact-

ing RNA (piRNA), siRNA, and microRNA (miRNA) (6). Mam-
malian piRNAs number between an estimated 50,000 and
200,000 distinct entities (7); the humangenome encodes�2000
miRNAs (miRBase). Currently, the number of endogenous
siRNAs in mammalian cells remains incompletely understood
and is still poorly characterized (8). RNases that participate in
the generation of these small ncRNAs include: Drosha
(miRNA), Dicer (siRNA and miRNA), and Argonaute (piRNA)
(Fig. 1). miRNA and siRNA biogenesis has been well described
(2, 3), whereas piRNA biogenesis is less well understood and in
part involves the processing of single-stranded RNAs by yet
identified ribonuclease(s) (9). Once assembled, piRISCs are
thought to act primarily to silence cellular mobile genetic ele-

ments (e.g. retrotransposons and transposons) (10–12),
whereas endo-siRISCs and miRISCs regulate targeted mRNAs
through perfect or imperfect complementarities with sites
located in the 5�-UTR (13, 14), coding (15, 16), and 3�-UTR (17,
18) sequences in the substrate RNAs.
RNAi activity is involved in many eukaryotic cellular pro-

cesses. For example, the dysregulated expression of miRNAs
and other RNAi components has been described in cancers,
metabolic disorders, and infectious diseases (19, 20). In plants,
RNAi serves as a host defense mechanism against viral infec-
tions (21, 22). In mammals, the role of RNAi in regulating viral
infection is less clear; however, accumulating findings are con-
sistentwith this role (23–25), including recent evidence that the
virulence of viral infection in mammals is increased when host
RNAi functions are attenuated (26–30). Substantive advances
have been made in our understanding of the interplay between
HIV-1 and the cell’s RNAi activity. Recent findings illustrate
that many human miRNAs can target HIV-1 sequences and
thatHIV-1 infection can change themiRNAexpression profiles
in the circulating blood cells from infected individuals (25).
Here, we briefly review extant progress and discuss future ques-
tions pertinent to HIV-1 and RNAi biology.

Cellular miRNAs Regulate HIV-1 Expression

miRNAs can modulate HIV replication in two ways: directly
targeting HIV RNA or targeting the mRNAs that encode host
cell factors relevant to HIV replication (Fig. 2 and Table 1). The
first attempt to search for miRNAs that directly target sites in
theHIV genomewasmade byHariharan et al. (31). Using target
prediction software, they identified fivemiRNA (miR-29a,miR-
29b, miR-149, miR-324-5p, and miR-378) target sites in the
HIV-1 genome, with two of these sites located in the viral nef
gene (31). These investigators confirmed later that one of the
five identified miRNAs (miR-29a) inhibited nef expression,
leading to repressed HIV replication in Jurkat cells (32). This
effect was also observed by Rana and colleagues (33), who pre-
dicted target sites for 11 miRNAs in the HIV-1 3�-UTR and
further experimentally validated an inhibitory effect ofmiR-29a
on HIV replication. More recently, Sun et al. (34) also reported
the inhibition ofHIV-1 infection bymiR-29a andmiR-29b; they
noted, however, that miR-29 access to HIV-1 is limited by the
complex RNA secondary structure surrounding the target site.
A different group of five miRNAs (miR-28, miR-125b, miR-

150, miR-223, and miR-382) that target the 3�-UTR of the HIV
genome was reported separately by Huang et al. (35). These
“anti-HIV” miRNAs were shown to be enriched in resting
CD4� T cells and were hypothesized to be involved in proviral
latency. In a another study, Wang et al. (36) reported that four
of the miRNAs characterized by Huang et al.were also respon-
sible for differences between monocytes and macrophages in
their permissivity to HIV infection. Recent work by Houzet et
al. (37) confirmed the action of miR-29 and identified four new
miRNAs that target HIV-1 (miR-133b, miR-138, miR-149, and
miR-326). Taken together, the findings collectively suggest
that, in divergent cells and in varying contexts, different miR-
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NAs may selectively regulate HIV-1 infection through direct
targeting of viral sequences.
miRNAs regulate host gene expression through complemen-

tarity-driven silencing of cellular mRNA sequences. Genome-
wide screenings have identified recently several hundred host
proteins that regulate optimal HIV-1 replication in human cells
(38–42). In considering host cell proteins, it is reasonable that
miRNAs may regulate them in ways that impact viral replica-
tion. There are several examples that support this reasoning.
For instance, Sung and Rice (43) found that miR-198 targets
the cyclin T1mRNA, which encodes a HIV-1 Tat cofactor, to
confer differences in permissiveness between monocytes
and macrophages to HIV infection. They also found that, in
different cellular contexts, other miRNAs regulate cyclin T1

(e.g. miR-27b, miR-29b, miR-223, and miR-150), potentially
explaining expression differences of HIV in resting versus
activated T cells (44). Independently, miR-17-5p and miR-
20a were found by a separate group to target p300/CBP-
associated factor (PCAF), another cellular cofactor of the
viral Tat protein (29), and a further set of six miRNAs (miR-
15a, miR-15b, miR-16, miR-20a, miR-93, and miR-106b)
were reported to repress the expression of a third Tat cofac-
tor, Pur-�, which was noted also to be enriched inmonocytes
(45). In a converse example, Zhang et al. (46) found that
miR-217 was induced by Tat and that miR-217 increased
HIV-1 expression by targeting SIRT-1 (sirtuin-1), a host pro-
tein that deacetylates and inactivates Tat function. Collec-
tively, these discrete findings illustrate the complex miRNA-

FIGURE 1. Biogenesis of small ncRNA. The three main types of small ncRNA found in mammals are derived through the action of various RNases on different
RNA precursors. A, piRNA is formed when RNA transcripts are cleaved by a still unidentified RNase before associating in the cytoplasm with a PIWI complex. This
processed strand, in complex with a PIWI protein (Mili and Miwi in mammals), may directly mediate RNAi. Alternatively, the piRNA may aid in the production
of additional piRNAs through what has been termed the “ping-pong cycle.” piRNA guides the PIWI complex to a complementary RNA and cleaves it. The small
cleaved RNA then associates with another PIWI protein and cleaves RNA complementary to it. This cycle can continue as long as pairs of complementary
transcripts are available. B, miRNA is synthesized when long RNA transcripts fold into hairpin structures that can be recognized by the complex of the RNase
Drosha and DGCR8. Drosha cleavage results in a short hairpin structure that is exported from the nucleus. These hairpins are bound by Dicer in a complex with
TAR RNA-binding protein and then cleaved by Dicer in the cytoplasm to yield the mature miRNA duplex. One strand of the duplex is loaded into the
Argonaute-containing RISC. C, a siRNA is produced when long dsRNA (from either the cell or external sources) is acted upon directly by the Dicer protein. This
cleavage generates a phased array of siRNA duplexes that are loaded into the RISC. Mature siRNA can be classified as endo- or exo-siRNA based upon the origin
of the original dsRNA.
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mediated positive and negative regulatory events that
influence viral replication (Fig. 2).
HIV-1 is only one ofmany viruses whose expression has been

demonstrated to be modulated by cellular miRNAs. Inhibition
of influenza virus replication has been described for four miR-
NAs: miR-323, miR-491, miR-654 (47), and let-7c (48). Other
examples include the targeting of primate foamy virus 1 by
miR-32 (49); vesicular stomatitis virus by miR-24 and miR-93
(27); hepatitis B virus by miR-125a-5p (50), miR-199a-3p, and
miR-210 (51); and hepatitis C virus (HCV) by miR-196, miR-
296, miR-351, miR-431, and miR-448 (52). For HCV, a rather

unique and unexpected finding is that a liver-specific miRNA,
miR-122, was found (unlike other miRNAs, which generally
repress viral replication) to directly target HCV RNA sequence
to up-regulate viral replication (53). So far, there are no other
examples of viral replication being up-regulated by direct
miRNA-mediated targeting. Indeed, the list of viruses that are
regulated by cellular miRNAs is expected to grow longer, and
we expect to learn more about the apparently conserved role
played by miRNAs in regulating the infection of cells by many
viruses (54).

HIV-1 Infection Changes Cellular miRNA Profiles

As noted above, cellular miRNAs can affect viral replication;
and conversely, it could be that infection bymammalian viruses
alters the cell’s miRNA expression (55, 56). For HIV-1, the first
report of this effect was shown by the transfection of a replica-
tion-competent HIV-1 molecular genome into HeLa cells,
which demonstrated repression of the majority of the cell’s
miRNAs (57). Initially, it was thought that the RNAi-suppress-
ing function of the HIV-1 Tat protein (58, 59) explained these
miRNA changes. However, later findings suggested more com-
plex explanations (60). Thus, inHIV-1 infection ofCEMTcells,
Hayes et al. (60) observed changes in 145 cellularmiRNAs, with
the repression of only 22 cellular miRNAs appearing to corre-
late with the RNAi-suppressing activity of Tat. In a separate ex
vivoHIV-1 infection of primary peripheral blood mononuclear
cells (PBMCs), Sun et al. (34) reported reduced expression of
miR-21, miR-155, miR-29a, miR-29b, miR-29c, and miR-
142-3p and the increased expression of miR-223. Their
observed reduction in miR-29a, miR-29b, and miR-29c agrees
with similar findings obtained by HIV-1 infection of CEM T
cells reported by Hayes et al. (60) and ex vivo PBMC infections
reported byHouzet et al. (61).However, theirmiR-21,miR-155,
miR-142-3p, and miR-223 changes were not observed in the
latter two studies.

FIGURE 2. Host miRNAs regulate HIV replication. Host miRNAs that have been experimentally shown to regulate HIV expression are illustrated. HIV-1
transcription is altered by miRNAs that target positive (�) or negative (�) transcription factors (e.g. cyclin T1, PCAF, Pur-�, and SIRT-1). Other miRNAs, as
outlined in text, can directly target HIV RNA and decrease viral protein expression through inhibition of translation.

TABLE 1
miRNAs involved in the regulation of HIV-1 expression

* miR-125b was involved in HIV-1 restriction in resting T cells only.
** This study specifically examined only the miR-326 target site.
*** Indirect regulation of cyclin T1 by miR-29b, miR-150, and miR-223.
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Besides miRNA changes in ex vivo infected cells, there is also
intense interest in understanding in vivo miRNA changes in
HIV-1-infected individuals (61). This is technically more chal-
lenging because HIV-1 infects a very small fraction of CD4� T
cells in vivo, estimated to be 1 in 10,000 in the blood and 1 in 100
in the lymph nodes (62); thus, the profile of miRNA expression
in blood cells would reflect contributions from uninfected and
virus-infected cells. The first investigation of this issue was
made by Houzet et al. (61), who studied PBMCs from 36 HIV-
1-seropositive individuals and compared them with corre-
sponding samples from 12 uninfected controls. They found 59
miRNAs that were down-regulated in PBMCs from the sero-
positive individuals, and they noted that the pattern of miRNA
changes was different depending on whether the infected indi-
viduals had high CD4� T cells and low viral load, high CD4� T
cells and high viral load, low CD4� T cells and low viral load, or
lowCD4�T cells and high viral load. These initial findings have
been followed up by two other studies. Hence, Bignami et al.
(63) examined changes in 377 miRNAs in CD4� T cells from
HIV-1-seropositive patients matched with controls. They pro-
filed miRNAs in elite HIV-1 controllers (individuals who had a
documented history of infection of�15 years andmaintained a
mean CD4� T cell count of �900 cells/ml with undetectable
viremia in the absence of therapy), multiplyHIV-1-exposed but
uninfected individuals, and treatment-naïve HIV-1-infected
patients. They found that the miRNA profiles from the elite
HIV-1 controllers and treatment-naïve HIV-1-infected indi-
viduals were virtually indistinguishable but that they differed
from the miRNA profiles in multiply HIV-1-exposed unin-
fected persons. The results suggested that miRNA profiling
could distinguish between HIV-1-infected and HIV-1-exposed
but uninfected individuals. Bignami et al. interpreted that the
miRNA changes in HIV-1-infected persons were likely conse-
quences of immune responses to ongoing in vivo replication of
HIV-1, whereas the miRNA changes in the repeatedly exposed
but uninfected individuals (as defined by a history of frequent
sexual encounters with an HIV-infected partner) were due to
immune responses from recurrent exposures to non-replicat-
ing HIV-1 antigens.
A separate in vivo study was performed byWitwer et al. (64),

who compared miRNA profiles in PBMCs from healthy indi-
viduals, elite HIV-1 controllers (�50 viral copies/ml), and vire-
mic HIV-1 patients. They observed the down-regulation of
miR-150 and miR-29 family members in viremic patients, sim-
ilar to the published results of Houzet et al. (61), and also the
down-regulation of miR-150 and miR-125b, in agreement with
the earlier findings of Huang et al. (35). Overall, Witwer et al.
concluded that in vivomiRNA changes correlate, albeit imper-
fectly, with clinical disease parameters of CD4� cell counts and
plasma viral loads and that in vivo miRNA profiles could be
useful biomarkers for HIV-1 disease progression.
The understanding of genome-wide protein and miRNA

changes in HIV-1 infection is at a relatively early stage. When
viewed en toto, the published data from the various studies
could be considered to show very modest overlaps in the
miRNA profiles. This degree of discordance in miRNA results
mirrors similarly limited agreements among the several hun-
dred protein factors that have been identified in multiple

genome-wide surveys of host proteins that contribute to HIV-1
replication (reviewed in Ref. 41). A clear future challenge for
these large data-intensive experiments is to better control the
variabilities inmethodology and the cell and patient conditions
between the studies. Whether (and how) miRNA changes can
causally affect in vivo HIV-1 progression or if the miRNA
changes are simply consequences of HIV-1 infection also needs
careful dissection.

HIV-1 Proteins That Interact with the RNAi Machinery

Although HIV-1 infection can change the expression of cel-
lular miRNAs, it remains unclear if HIV-1 proteins act directly
to influence cellular RNAi activity. Current data show that
plant viruses, invertebrate viruses (65–67), and mammalian
viruses, such as influenza virus, Ebola virus, and human T cell
lymphotropic virus (59, 68–70), encode modulators of cellular
RNAi. For HIV-1, the viral Tat protein, a transcriptional acti-
vator with a highly basic RNA-binding domain that can inhibit
cellular interferon response (71, 72), has also been suggested to
have RNAi-suppressing activity (58). How Tat suppresses
RNAi remains incompletely understood; however, the highly
basic amino acid domain of Tat (58, 73) can bind and sequester
small RNAs, preventing their association with and activation of
Dicer (74). The ability of Tat to suppress cellular RNAi function
has been shown in several assays (59, 75, 76), including the
direct delivery of Tat into neurons, which changed (by�2-fold)
the expression of 50 cellular miRNAs (77). Nonetheless, it
should be noted that the observed apparent RNAi activity of
Tat has also been suggested to reflect an indirect effect of its
transactivation of cellular promoters (78).
Two other HIV-1 proteins have also been proposed to influ-

ence cellular RNAi function. Mukerjee et al. (79) studied the
HIV-1 Vpr protein. They showed that Vpr can cross the plasma
membrane; and in tissue culture experiments, it, like Tat, can
affect the properties of neuronal cells. Thus, the treatment of a
neuronal cell line with soluble Vpr protein up-regulated 30 and
down-regulated 15miRNAs (79), suggesting a Vpr effect on the
cellular RNAi machinery. However, a separate study that com-
pared CEM T cell line infection with either Vpr� or Vpr�
HIV-1 found no cellular miRNA changes attributable to the
Vpr protein (60), questioning the influence of Vpr on RNAi.
Separately and unexpectedly, Bouttier et al. (80) reported that
HIV Gag binds the AGO2 (Argonaute-2) protein. Intriguingly,
their results suggested that a Gag-AGO2 protein interaction
does not affect RNAi function directly but enhances viral rep-
lication by increasing the packaging of HIV-1 RNAs into viri-
ons. However, it remains unclear whether the redirecting by
Gag of AGO2 away from its RISC function into a novel RNA-
packaging pathway might indirectly change cellular RNAi.

Future Questions and Perspectives

Our understanding of HIV-1 interaction with the host’s
RNAimachinery is still at a nascent stage. As wemove forward,
several additional questions warrant consideration. First, it
remains debatedwhetherHIV-1RNAs are processed efficiently
by host cells into viral ncRNAs. Recently, bovine leukemia
virus, an animal retrovirus, was reported to synthesize a viral
RNA that is proficiently processed in cells into small ncRNAs
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(81). In three pyrosequencing studies of RNAs from HIV-1-
infected cells (82–84), several small HIV-1 ncRNAs have been
identified, some measuring at levels slightly higher compared
with low abundance cellular miRNAs, suggesting that theymay
serve biological roles. Nonetheless, the relative paucity of abun-
dantly expressed HIV-1 ncRNAs remains puzzling. Is this
because of inefficient biogenesis or overly efficient degrada-
tion? Are HIV-1 ncRNAs preferentially degraded by yet to be
characterized small RNA-degrading nucleases (85, 86)?
Although answers pertaining to degradation remain unknown,
there is increasing evidence that HIV-1 can express an anti-
sense transcript from the 3�-end of its genome (87–89) that can
form long RNA duplexes with counterpart sense HIV-1 RNAs.
Whether these putative long antisense-sense double-stranded
RNAs can be precursors for viral ncRNA biogenesis requires
further examination.
Another topic of emerging interest is the role of extracellular

circulating plasma miRNAs in normal and diseased states (90,
91). Compared with control plasmas, it has been reported that
patient plasmas have elevated levels ofmiR-155 in female breast
cancer individuals (92); miR-155 and miR-21 in lung cancer
patients (93); and miR-21, miR-141 and miR-200 in persons
with ovarian cancer (94). Relevant to disease-associated extra-
cellular miRNAs, two recent studies have suggested that HIV-1
infection increases the release of exosomes that contain cell-
free miRNAs frommacrophages and peripheral blood lympho-
cytes (95, 96). Important future questions include how
cell-free circulating miRNAs are changed in the plasma of
HIV-1-infected individuals compared with uninfected con-
trols and if these circulating miRNAs causally influence
AIDS pathogenesis.
Here, we have focused our discussion on RNAi-mediated

post-transcriptional gene silencing, which is a well accepted
biological process in mammals. By contrast, RNAi-mediated
transcriptional gene silencing (TGS) is a well characterized
finding in lower eukaryotes that has remained controversial for
mammals because many of the components needed for this
process are found in plants and yeasts but are absent in mam-
malian genomes (97, 98). Currently, we do not know the role, if
any, of TGS in the physiological regulation of and/or in the
therapeutic utility for HIV-1. There are reports suggesting
HIV-1 promoter-specific TGS (99, 100) in human cells, which
will need to be carefully validated. The thoughtful investigation
and integration of the roles contributed by post-transcriptional
gene silencing and TGS to HIV-1 infection of cells and humans
promise to keep researchers busily occupied for many years.
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